

LUBRARI, PNESFNTED BY in. Geo. S. Merison GITo. $29 \quad 1855$	

Onylimenente of
(HEO.S. MORISON.

THE BELLEFONTALE BRLDGE.

A REPORT

To otiarles E. PERKINS, President of the Chicago, Burlington \& Quincy Raitroad, BY

GEORGE S. MORISON, Chtef Engineer of the Bellefontaine Bridge

SUb.JECTS.
I. Prei.minary Narrativ
IL. Gencral Deseription
TIL. Substrncturre.
IV. Superstruc
YI. North Approaeh
VII. Protection Work
VIII. Cost.
Pagen
3
3
4
+
+
. General Elevation, Plan and Profile
Piess I and V
4. Piecs II and IV.
5. Pier IIK.
Casisone.
7. Diagram showing Rate of Progress of Sinking Caiesons
8. Riccord of Water Stages
9. 440 foot Span , General Elevation.
10. " " " Section and End Eleration
APPENDICRS
$\begin{array}{lll}\text { A. List of Engineers, Employees and Contractors. } & 15 \\ \text { B. Charter and Contract witt War Department. } & 16\end{array}$
$\begin{array}{lll}\text { A. List of Engineers, Employees and Contractors } & 15 \\ \text { B. Charter and Contract with War Department................... } & 16 \\ \text { 1. }\end{array}$
B. Charter and Contract with War Department....................... ${ }^{16}$
D. Tinne, Cost, ete., of Foundetione
D. Tine, Cost, ete., of Foundation
E. Specifications for Masonry

- speciications for Superstructu
G. Teat of Full Size Eye Bars
$\begin{array}{cc}\text { " } \\ \text { " } & \text { " } \\ \text { " } & \text { Section and End Elevation } \\ \text { Penel Pointa } 0,1 \text { and } 2 \text {. }\end{array}$
" ". " " ". $\quad 3,4$ and
" " " " " 3,4 and 5 .

13. "" " " " "
14. Viaduet Foundation.
15. Viaduct Foundations.
16. Visduct Superstructure
17. Floor.
18. Shore Protection.

President Chicago, Burtington \& Quincy R. R. Company
I submit the following Final Report in relation to the Bridge nornss the Missomri River at Bellefontaine Blufis, Missouri. I submit the following Final Report in relation to the Bridge acrass the Missonri River at
Yours truly Gours truly, George S. Morison,

THE BELLEFONTATNE BRIDGE.

PRELIMTNARY NARRATTVE.

The Bellefontaine Bridge is on the main line of the St. Louis Extension of the St. Louis, Keokuk \& Northwestern R. R., one of the proprietary lines of the Chieago, Burlington \& Quincy R. R. It is built under authority of an Aet of Congress, approved February 17th, 1888, which elaater is printed in Appendix B.
The selection of terminals for the St. Lonis, Keokuk \& Northwestern R. R. in the City of St. Lonis, and the loeation of a line by whieh that railroad might be extended to the City of St. Lovis, was plaeed by you iu my hands in the early part of 1887 . Tlis extension involved a bridge aeross the Missouri River. An examination of the country horth of St. Louis and of the Missouri River convineed me very early hat the extension ought to be built through the bottom land between the Missistippi and Missouri Rivers, crossing the Missouri River so near he Mississippi and Missouri Rivers, crossing the Missouri River so near the mouth that a low grade live could be suil from the bridge to the sity. The importance of a line of this kind was further emplasized from the fuct that the place in whien it was deeided to pruelase termialyar an mip
northern limits of the eity to a point ealled Jamestown Landing, frow the faet that nany years ago the eargo of tho wreeked steamer Jamestown had been landed there, and at that time seleeted the Amestion on whieh the bridge has been built, as the hest point to crose the river. This Jeation is 8.2 miles firm the wouth of the river pecording to the mape published by the Missouri River Commission. the solmost ime city of Altou and ouly 43 mileo fom the from that city. It was evident to me at the time, that if a bridge was Bridge eould be made to serve as the entranee to St . Lonis for railroads from the enst well is from the weet Altowh your compan did

居
The purehase of St. Lonis terminals was begnu in 1887 but was conducted secretly mintil May 10th, 1889, when deeds to the eompany

 eptu tor han had been antieipated.
The plans for the structure were submitied to the Secretary of War and approved by a formal eontraet with the Wur Department dated Teeember 21 st, 1889 , this eontract boing printed in Appendix B.

Actual construction was not begun till 1892, when, on the 19th of February, you authorized me to proeced with the construetion of the bridge over the Missouri River.

Mr. B. L. Crosby was appointed Resident Engineer of the work, and on the 1st of July, 1892, he was relieved of the work of whieh he had been in eharge in St. Louss, and his headquarters were established at the bridge
siustion was an inacessible one and remote from any town it became neeeseary to establish a camp at the site of the bridge and to
eonstruet buildings for nse. The fist artnal work done in preparation was on April 7th, 1892, wheu a foree began elearing timber from the right of way. On April 19th the building for the eugineer's office was begun.

The steamer Joun Bertrum, with a full outfit of pnenmatic machinery, which had been used at the Rulo, Nebraska City and Memphis Bridges, as well as for some repair worls at the pivot pier of the Kansas City Bridge, was brought to the bridge site on the 7th day of May.

Eighteen hundred and ninety-two was a year of high water; the lower Missouri River as well as the Mississippi River at St. Lonis were higher than at any time since 1858. The slope of the river opposite the City of St. Lonis was, however, somewhat abnormal, and it is proiz able that the river at the site of the Bellefontaine Bridge was highe than it has been at any time since 1844 . On the 18th day of May it reached elevation 115.I ; the zero being a datum plane 100 feet below the St. Louis City directrix, to which datum all levels on the work were referred. This high water prevented any considerable amouut of work being done during the first half of the year

The first aetual work doue was on the 4th of July, 1892, when the exeavation at the site for Pier I was begun. The first work on the xiver foundations was begun on the 13 th of July, when the first timber was frumed for oue of the eaissons.

The work of construction went on eantinuously withont interrup tion till the eompletion of the work. The system on whieh the work was eondueted was the same that had heen adopted on other larg bridges built under my direction. The foundations were put in by foree working under the immediate direetion of the Resident Engineer. The masonry and superstrueture were let by contract
The eontraet for the masonry was let to the firm of Christie \& Lowe Mr. George A. Lederle being the resident partner the eontrae being dated Mareh 28th, 1892. The eontract for superstructure of the bridge proper was lot to the New Jersey Steel \& Iron Company of

Treuton, N. J., the contract being dated June 18th, 1892. The contract for the steel viaduct at the north end was let to A. \& P. Roberts \& Company of Pencoyd, Pa., their contract being dated December 14th, 1892. On the 9th day of September, 1893, a contract was made with Mr. William Baird for the ercetion of the superstructure of the main bridge. Small contincts for the delivery of special materials were made from time to time, but there were no other important contracts.

The superstructure was ereeted and a track laid across the bridge so that the first train crossed on December 27 th, 1893. No formal opening took place. The first regular time table went into effect March 4th, 1891, at which time the bridge was put in regular service as a double track structure.

II.

GENERAL DESCRIPTION.

The Bellefontaine Bridge is a double-track railroad bridge. It consists of four through spans, each 4.10 feet long between centers of end pins, resting on one masonry abutment and four masoury piers. At the north end of the bridge there is an iron viaduct 849.83 feet long, consisting of 28 spans, restiug on brick piers with pile foundations. The total length of the permanent structure from the face of the back wall of the abutwent to the end of the iron viaduct is 2630.77 feet. The four main spans of the bridge are built on a vertical curve corresponding to the camber of the trusses. The viaduct descends from the bridge northward with a grade of 0.5 per cent.

As the soutb abotment is founded on rock above low water, and
the bluff rises rapidy from this rock, there is virtually no south approsch.

The north approach consists of 2900 feet of temporary timber trestle, which is built on the continuation of the grade on the iron viaduct; beyond this trestle is a solid earth embankment built to the same grade. The crade line south of the river was so laid that enough material would be taken from the cut through the bluffs to fill the eutire trestle the track being first laid on a temporary location.
The bridge and north approach are on a single straight line. 6984 feet from the north ond of tho viaduct, this tangent intersects two other tangents, one leadiug westward and forming the main line of the other tangents, one leadiug westward and forming the main sime of the
St. Louis, Keokuk \& Northwesteru R. R., and the ofler leading to the St. Louis, Keokul de Northwestern R. R., and the otlier leading to the
Alton Bridgc. The bridye and approaches may properly be considered as extending from the south side of the abutment to the foot of the grade on each of the two diverging lines.

The location of the bridge is shown on Plate 1. The general cbaracter of the bridge and the profile of the approach are giveu on Plate 2. The piers were numbered from the sonth northward, the south abutment being Pier I, the north pier, Pier V. This same numbering, designated, however, by Arabio numerals, was extended to the viaduct piers.
III.

SUBSTRUCTURE.

The substructure of the bridge proper consists of one masonry abutment and four masoury piers. The abutmeut is at the soutle end and is designated as Pier I. The four nasonry piers are designated as

Piers II, IIL, IV and V ; they are all foutded on pheumatic caissons The caissons for Piers II, III and IV are all of the same horizontal dimensions, being 70 feet long, 30 feet wide and 16 feet high. They are surmounted by crib work filled with concrete, having the same horizontal dimensions as the caissons, but varying in height with the several piers. The oaisson for Pier V is 24 feet wide, 60 feet long and 16 feet high and sumounted by a timber crib of the same character as that of the other piers. In the larger caissons there are four trausverse braces of 16 inch square timber in the working chamber and also a longitudinal timber of the same size; in the smaller caisson the longilongitudinal timber was onittel, and there were only two transverse timbers. tudinal timber was onitted, and there were three-inch plank and then The insides of the chambers were inci with three-nch plank yollow pine carefully c
throughout

Piers II, III and IV are founded on the underlying bed rock. The foundation of Pier V was not carried to rock.

The following table shows the heights of the four piers:

	$\begin{aligned} & \text { Bottom of } \\ & \text { Foumdation } \end{aligned}$	Height of	Height of Caisson and Crib Work.	Elevation botcom of Masonxy.
Pier II.	23.47	94.4	40.4	63
Pier III	3.08	${ }^{43,15}$	${ }^{60.95}$	${ }_{64.03}$
Pier IV	-9.17	55.1	73.9	${ }^{61.73}$
- Pier V.	9.96	61.0	80.0	89.26

All the caisons, except that for Pier IL, were built on launching ways on the north side of the river and launched and towed into place. The caisson for lier II was built on blocking on the sand bar at the site of the pier.

The plans of the several piers are shown on Plates 3, 4 and 5. The piers are of the same general plan that I have used on other large structures. Piers II, III and IV measure 12 feet tbick and 34 feet long between shoulders, under the belting course. Pier V measures 9 feet
thick and 39 feet long between shoulders under the belting course. Piers II, III and IV are precisely alike in all dimensions above the crib work except that P'ier III is 0.45 feet higher than either of the other two, this difference providing for the vertieal curve on the bridge
The Specifications for Masonry are given in Appendix E. The work is built generally of limestone from the quarries near Redford, Indiana, or at Romona, Indiana, the two stomes being so mouch alik that they caunot be distinguished in the work. The face stone of the fourteen courses in Piers II, III and IV, from elevation 88.0 to the under side of the starling coping, are granite from St. Cloud, Minn
The floating equipment furnished by the railroad company was as follows

Stamer Jomn Bertram, ". Pauline,	$\begin{aligned} & 390.49 \text { ton } \\ & 60 \end{aligned}$
Concrete mixer barge,	30 ft x 90 ft .
Pile driver and derrick barge,	24 " $\times 70$
Pressure men's house barge,	24 "x 64 "
Sonnding barge,	10 " $\times 24$
One material barge,	30 " $\times 81$
Two	26 " x 80 "
One	24 " $\times 80$
One	24 " $\times 70$

Several other barges of various sizes were chartered during the work Several other barges of various sizes were chartered diring the work.
Besides this the contractors for the masonry had the following floating equipment:

$$
\begin{aligned}
& \text { Steamer Geo. L. Bass, } 60 \text { tons. } \\
& \text { One derrick barge, } \quad 40 \mathrm{ft} . \times 80 \mathrm{ft.,} \text { with mast } 80 \mathrm{ft} \text {. high. } \\
& \begin{array}{ll}
\text { One " } & 30 " \times 80 \\
\text { Four brvges } & 22 " \\
\hline
\end{array}
\end{aligned}
$$

In view of the great depth at which some of the foundation work had to be done, and as there was apprehension of an unhealthy serson,
spocial arrangements were made for the health and cornfort of the men. A regular resident physician was engaged and attached to the engineeriug staff. A supply of drngs and simple surgical tools was provided, and a smail hospital was erected. With these special provisions the work was carried through without any unusual trouble.
The launching ways were built of piles and capped. The first two caissons launched were precisely alike, and the order of their use was determined by the condition of the river at the time.

PIER

The first work done in construction was the excavation at the site of Pier I on the south bluff. Work, however, was not pressed and was only carried on at such times as forces could be convenientily pared from other parts of the work. The excavation, which was largely in loose rock, was not completed till December 2nd, 1892 The rock was leveled off with concrete and the first stone was set in this abutment on the 31st of May, 1893. The abutment was finally finished June zend, 1883.

P1ek 11.

The outting edge of the caisson for Pier II was set nop on block ing at the site of the pier on the 24 th of October, 1892; the caisson was fuished on the 5th of Noveluber and wos lowered on the sand hottom on the 7th of November, 1892. The concrete filling was begun the 14th of January, 1893. Air pressure was applied ou the 19th fanuary. The concrete filling of the crib work was completed on the 12thr of February. The laying of masonry was begun on the 7th of March. Rock was reached on the south side of the pier on March 30th at elevation 29.60. This rock was a solid ledge but sloped off opidly to the north; the lowest point of the rock was at elevation 21.60, at the northeast corner, there being a difference of eight feot inside the cuisson. Blasting whs resorted to on March 31st, using rackarock as the explosive, and was continued until April 23rd when
he caisson reached its final eleyation of 23.47 . The rock was removed fom the caisson by the aid of a clay hoist of the same pattern as we sed on the Rulo and Memplis Bridges. The rock was cleaned and he sealing of the caisson begrun April 25th; the sealine was finished Nay 3rd.
On the north side the cutting edge did not reach the rock, excep fr a slhort distance near the northwest corner, but bloeking was pu nder the shoulder of the catting edge to support the caisson and the wok entirely eleared off so that the concrete filliug rearled to th rock throuchout; at the northeast corner of the caisson the concrete was carried down more than two feet below the cutting edge
During the filling of the chamber with concrete, there was a shar rise in the river, which completely submerged the pier, only the shaft and pipes being kept above water; and they were protected from injury onl drift logs, by a bulwark of bags of crushed stome built up on the nose of the pier and extended aronnd the shafts. During the last day two

The entire pier was finished July 4th, 1893

IER III

Tho eutting edge of the cnisson for Pier III was set up on th muching ways on the 30 th of July, 1892, and the caisson was finished and lannched on the 20th of August. When this caisson was bein built the river fell rapidly and sand bars formed so that there was only Fon two to five feet of water at the site of the pier, while the caisson drew ton feet. On August 21st the steamer John Bertram wa. moored at the site of the pier and her wheels started to wash out the sand; this was sncecesfolly accomplished so that on the 23 rda a basin from six to ten feet deep had been washed out. In the meantime barges had been placed on each side of the casson, and heary timbers, running across the caisson aud barges, were securely bolted to the caisoon. On the moming of the 23 ra the stemmer Joirn Bertra was brought back to shore and placed behind the caisson; air connea-
ions were made with the eaisson, and with the help of the steamers Pavuise and Geo. L. Bass, the caisson was towed out till it struck against a submerged bar in the middle of the river. Air was then pumped into the caisson until it was raised euough to pass over the bar as the caisson was raised by air pressure, blocking was placed on the barges under the heavy timbers bolted across the caison, to keep i from tipping. Tbe caisson was tben towed further till it grounden arain near the site of the pier, was arain raised until it drew only font again near the site of the pier, was again ralsed untir a half, was then finally placed, the air pressure released, and feet and a half, was then finally placed,
The conorete filling was begun on the 28th of August, and air ressure was applied on the 2nd of September. The concrete filling of the crib work was completed on the 23 rd of September. The laying of masonry was begun on the 9th of November. The caisson finally eached the rock at elevation 3.08 on Jamnary 3rd, 1893. The rock was cleaned and the sealing of the caisson begun Jauary 5th; the ealing was finished Jaunary 11 th and the pier was finished May 19th 1893.

pier iv.

The cutting edge of the caissou for Pier TV was set up on the aunching ways on August 20tll, 1892; the caisson was finished and launohed on September 20th, on the 24th it was towed into position and securely fastened to four clusters of anchor piles near the four corners; by means of lives leading from these clusters of piles, it was held recurately in position and sunk down to the sand. When the caisson was placed, soundings showed 14 feet of water at the west end and 13 fect at the enst end. The work of bnilding up the crib was etarted that night and continued till the 29th when concreting was started that night and continued till the 29 th when concreting was begun; at this time the soundings showed about twenty feet of water al around the floating caisson. As the weight of the concrete settled the the moning of the 3oth the water all around averaged 23 feet deep
with 25.5 feet at the northwest corner; in the afternoon the eaisson grounded on the south side, and on the morning of the 1st of Oetoher it was still aground on the south side, but on the north side the water was 25 feet deep; about 600 bags of sand were thrown in on the up stream end, and on the morning of the 2nd the caisson was aground at this end. Concreting was continned during the 3nd and 3rd, and on the afternoon of the 3 rd more sand bags were thrown in alony the north side as cutting had begun again there. On the morning of the th the air pipes were connected and air pressure applied. On trying enter the oaisson through the air lock. the door of the main shat below the lock was found to be blooked so that it could only be opened a few inches. Pressure was let off, and a man was lowered into one of the supply shafts, the top put on the shaft, and the air pressure restored; this man entererl the caisson and found that a part of a tem porary false bottom that had been used in latuehing had not been removed, and some of the timbers were jammed against the main shaf loor ; these be cleared away and were jammed against the nain shan the lock. The Resident Engineer entered and found that aloug the outh side the Resident Engiueer entered and found that aloug the roof, while aud east end the caisson was filled with sand netrly to the cutting edge Sold side and westi end the sand was below a cross beams and as the pressed down till the cross beams supported the greater part of the weight of caisson and concrete. All the cross beams were split, and the vertical posts between them and the roof were either pressed up into the roof or down into the beams; the second cross beam from the down stream end was pressed so that the distance hetween it and the roof was only 3 feet 4 inches instead of 4 feet, the vertical post at the center was split for its entire length and crusbed into the longitudinal beam. Concreting was at once stopped and men began leveling th sand and elearing ont under the beams; when this was done, the beam that had been pushed eight inches cane back to within thre inches of its original position, As soon as everything was cleared the
cracked beams were jacked into place and secmrely boited, new posts were put in alongside the damaged posts, and the work went on as usual.

The concrete filling of the crib work was completed on Oetober 23 rd . The laying of masonry was begun on Oetober 25th. The caisson finally reached the rock at elevation -9.17 on November 18th. The bed rock in the caisson was covered to a depib of two or three feet with bouldels ranging in size from au egg to a barrel; there were too many to ang to . whe der thember, cleaning off the bed rock a section at a time and using up the boulders as rapidly as possible. The sealing of the caisson was begun November 20th and finished Norember 29th, 1892, and the pier way finished April 29th, 1893.

PIER V

The cutting edge of the crisson for Pier V was set up on the launching ways on November 8th, 1892, the ceaisson was finished November ing ways on November 25 th, launched Deeember 11th. and was placed in position December 25 th, launched December 11th, and was placed in position Devember
16 th. The concrete filling was commenced December 16 th and the caisson grounded on December 17th. Air pressure was applied on the 21st of December, 1892.

The concrete filling of the crib work was finished February $28 t h$ 1893. The laying of masonry was begun on Mareh 2nd. The caisson reached its final restang place with the cutting erge in sand at elevation 9.26 , on March 7 th. The sealing of the caisson was begun on that day and finished on March 12th, and the pier was completarl May 27th 1893.

The full details of the five piers are given on Plator 3, 4, 5 and 6 . The rate of progress in sinking is illustrated graphically on Plate 7 Full records of the progress in detail in sinking these foundations were Appendix D

The cost of the four pneumatio foundations is shown in detail in the following table:

The cost and the quantities of masonry in the five piers are shown in detail in the following table :

The amount of masomry and concrete in the several piers and the amount of cement used is given in the following table:

The total cast of each pier is given in the following table :

	Foundutions.	Masonty.	Total.
Pier I...	\% 2312.32	\$33 138.26	8 25451.68
Piar 11..	55889,988	4942.52	195822.14
Pier III.	69 985. 41	50.110 .51	110 065.02
Pier IV...	67 500.64	49311.73	116819.87
Pier T ..	47 995.54	23 557.63	710303.29
Torxi	82333093.73	\$19580.77	\$628 784.44

IV.

SUPERSTRUCTURE.

The superstructure consists of four through spans. Enela span is 40 feet long between centers of end pins and 55 feet deep, divided into eight panels of 55 feet eacl, which are subdivided into sixteen panels, each 27.5 feet long. The trusses are placed 30 feet between iters.
The double-track members of the superstructure are proportioned on a Class C basis, that is, on a basis of a moving load of 3 oportomeds per fineal foot of track, but the singlo-track members are proportioned on a Class A bssis, that is, on a bosis of 4000 ponnds per lineal foot In proportioning the floor system these loads are doubled on a wheel base of 20 feet, and this double lond is reduced at the rate of one per cent for each additional foot over 20 fcet. The stringers, which ar single-track members, are, therefore, proportioned for a moving load of 7700 pounds per lincal foot, and the floor beams, which are double track members, for a moving load of 5775 pounds per lineal foot of track.

The entire superstructure is of steel.
the bridge is provided with a substantial steel fence on each side, this being for the protection of the watchmen and others who have to

THE BELLEFONTAINE BRIDGE.
cross the bridge and adding materially to the apparent strength of the tructure.
Expansion is provided for on Piers II and IV. The details of the expansion bearings are of the form I have recently adopted for all bridges, using segmental rollers 12 inehes in diameter, and distributing the weight over these rollers by a rocker plate with two cylindrieal surfaces at right augles to ewh other, so that any possible irregularity is taken up.*
The truswes lave single system webs and are made absolutely with out adjustment ; the top and bottom lateral systems are riveted. Full details of these trusses ate given on Plates $9,10,11,12$ and 13 . The strains and the basis under which they are computed are shown on Plate 14
The full specifieations for the superstructure are given in Appendix
F. The recorl of the tests of full size bats is given in Appendix G.

The entire superstructure, except the eye bars, was manofactured by the New Jersey Steel \& lron Company wbo took the contract for the whole. The workmanship was unusually good.

The steci was rolled by the following parties:
Carbon Steel Company
Cariegie Steel Company
Midvale Stecl Compray
Pencoyd Iron Works.
Pemssylvania Steel Company
The steel castings were made by the Standard Steel Casting Company.
The eye bars, except the bottom chord bars for one span (whicl were made by the Union Bridge Company at Athens, Pa.), were manu factured at the Keystone Bridge Works, in Pittsbury

The weights of the four spans were as follows

As it is convenient for purposes of comparison to classify these weights, the average weight of the four spars may be distributed as follows:
*Patented October ${ }^{2 \pi}$, 1892,

The coefficients are the weights divided by the length of span The four spaus were crected by Mr. Willinm Baird whose experience in this class of work is grouter than that of any other man living. The dates at which the several trussos were erected are shown in the following table

The timber floor was laid by the company's men working under the direetion of the Resident Engineer. The painting was done in the same manner
The total cost of the superstructure is given in the following table

\qquad

The viaduct at the north end of the bridge consists of 28 spans supported on 27 bents. Tho north bent is shorter than the others and is ported on 27 bents. Tho north bent is shorter than the others and is carried on a special masonry pier; the others are bracect together into
13 towers. The spans are alternately $28^{\prime} 6^{\prime \prime}$ and $32^{\prime} 2^{\prime \prime}$ long, the shorter 13 towers. The spans are aternatoly 28 and 32 long, the shorter spans occurring over the towers. We viaduct is made firoughour the without reaming. It was manufactured and orected by A. \& P. Roberts without roming. It was man or the Pencoyd Iron Works
Co. or the Pencoyd Iron Works.
The bracing of the thwols is rigid without adjustment.
Whe girders over the towers arce riveted rigidly to the tops of the The girdors over the towers are riveted rigidly to the tops of the
cowers, and the ends project slightly beyond the towers. The intermetowers, and the ends project slightly beyond the towers. The interme diate girdors, which are of precisely the same length as those over the towers, are supported on these projecting ends. The actual bearing is akon on short pins which are splat hormontally through the center, the whole being locked together by bronzc keys in an arrangemeut which permits of a slight rocking of the bearing and of a slight longitudinal motion, the weight being transferred at the nontral axis, so that no sliding takes placo under a moving load, the expansion occurring when the structure is light.
The bents and cross girders are proportionel on a Class C basis, the stringers on Class A basis.

The floor of the viaduct is identical with that of the main bridge.
Tho full details of this viaduct are shown on Plates 15 and 16 .

The towers are supported on brick piers resting on piles. Piers G, 7, 8 and 9 come between the restorod shore line and the shore hue as it existed wheu the work was begun; cach of these piers has nine piles under it whick were cut off at elevation 95 and support a timber grillge on which a block of concreto rests. Each of the other piers rests n seven piles which are buried in a block of concreto. All conerete blocks finish at elevation 101. Above the concrete the piers are bnilt of Galesburg paving brick laid in Portland coment mortar and are finished with cast iron eaps, the whole work being done by the company's men under the direction of the Resident Enginecr
The total amount of material in the viaduct piers is as follows

	52 Small Piers.	Pier 32.	Totai
Pites is work, Jmenl feet	13763	1431	15196
TTimber in work, teel B. M.	${ }^{20} 953$		${ }_{29} 953$
Conerete, exibic jaris.	${ }^{831.37}$	151.85	1009.42
	449.94		449.94
Stoone Xheonrs, enbie yrrls.		183	162
Anchor Resle, pounds..	17773		$1777 \square$
Cut Tron Cups, pouds.	72815		72910
Porthaud Covent, burrels.	${ }^{379}$	${ }^{196}$	575
Louisville Cement, barrels.	1036	11	1047

The total weight of the viaduct superstructure is as follows:

		$\underset{\substack{\text { Per Font. } \\ \text { Poundas. }}}{\text { a }}$
Tavers	89.1874	1038
Girders	899339	976
Fence .	108007	197
	138930	2158

As the average height of the viaduct from the cast iron caps to top of stringers is 47.66 foot the avorage weight por square foot of surface is 45.21 pounds equivalent to 22.62 pounds for a single track viaduct.

The cost of the piers is as follows:

	52 Small Peest.	Pare 39.	Toual.
Excorration and Reffilus.	*2010.53	* 110.37	\$2 121.00
Pilee nni Timber.	5468.12	${ }^{49} 9.18$	5941.30
Conorretio..	8514.45	${ }_{763.39}$	9878.04
Briek M.ssory,	759.1 .97		${ }^{7591.37}$
Stone Masmary.		2 \%30.80	8 533.30
Anclor Rods.	${ }^{\text {655.27 }}$		${ }^{657.27}$
Casas Tron Cupa.	1744.82		1744.92
Riprap...	${ }^{8551.35}$		${ }^{25551.85}$
Total.	\$885 63.01	88893.90	* *33 $_{3} 28.505$

The cost of tho piors per lineal foot of viaduct is $\$ 38.15$. The cost of the viaduct superstructure is as follows:
Nima

мırras Wonk.	$\begin{aligned} & \text { \$559 980.28 } \\ & 9831.86 \end{aligned}$	389353.14 180.93	\$08988.07
1ron and Steel, ereetud.			
Frught Charges fruíc Cticeso			
Work Truin Sertige			
Ftoon.			
Materinal..		263.85	
Freight. ..		${ }^{69.89}$	
Labor		915.99	
Work Train Serriea.		8.79	
Pammxa.			36.1 .01
Muterial...		419.88	
Frolght.		18.86	
Lnilor		1677.06	
Work Truin Serrice		79	2108.29
			8688730.87

The cost of superstructure per lineal foot of viaduct is $\$ 80.88$. On the same basis nised above for weights, the cost per square foot of surface of viaduct is $\$ 1.697$, or about 85 cents per square foot for a -
The total cost of the viaduct is $\$ 101150.82$ and the total cost per lineal foot is $\$ 119.03$

Yl.

NORTH APPROACT.

The North Approach was built as a double-trick trestle 2960 feet long under the direction of the Resident Engineer. This trestle contains 1437763 feet board measure of timber and 35220 lineal feet of piles. As it was intended to fill this trestle at once, perishable wood was used for piles, and no specifieation was made for sap in the timber.
North of this trestle is an earth embankment of ordinary description.
In June, 1894, a steam shovel was placed in the cut at the south end of the bridge and a regular force organizel to take out this cut, working under the direction of the Resident Engineer. The plant in use consisted of a Barnhart Class "A. A." steam shovel, in special car fited with a Lidgerwood Rapiil Unloader, Go flat cars fitted with prons for the work, one Bamhart's standard conter and one standard sile ballast unloader, and a spreading plow made on the work. The material excarated from the cot was taken across the river and nsed to material excavated from the cot was taken across the river and nsed to
firl the trestle. About 325000 cubic yards have been removed from fill the trestie. About 325000 cubie yards have been removed from work will be completed in the spring of 1895 .
The cost of the earth work in the embankment of the North Appronch and the filling of the tresle, is not included in the Table of Cost of the bridge, but forms part of the cost of grading the railroad in the two conaties of St. Chatles and St. Lomis.

PROTECTION WORK

The only protection work on the south side of the river consists of roughly pitched pavement upon the slope of the embankment which encloses the abutment.

On the north side of the river a considerable amount of protection was recquired. When the location of the bridge was first made the shore line was where Pier V now stands, but during the period which elaysed before actual construction began. about 1.50 feet of this shore was wasled away, aul it was thought best to restore the original shore was wasthed The erosion at this point is of rather peculiar character; it does not oreur at high water; one mile abure the bridge Little's Island dividos the river into two chaunels, the north clamel being dry at low water; during hich water, the water passing through the north channel throws the current agaiust the south bluff at the bridge site, and no erosion takes place on the north shore ; but at low water the
 entire current of the river passing south of Little's Island strikes the rooky bluff above the briuge and is leflected to the north shore. As
this shore had to be protected only against the erosion of low or this shore had to be protected only against the
The work comprised two parts, the protection of the existing shore ine and the restoration of the original shore line. The former was line and the restoration of the original shore lime. The former was accomplished by a mat of the kind commonly used by the Missouri
River Commission, and the latter by constructing a screen dike into the river. The location of this mat and dike is shown on Plate 18.

The mat is from 150 to 200 fect wide, formed of woven willows and covered with riprap, It was built in 1893 . The shore was first trimmed to a slope of about three horizontal to ome vertieal, and on this the mat was woven extending out into the river; it was then loaded with rock and sunk: it was anchored to the shore by wire strands at intervals of 16 feet, every sixth strand being on" diameter and the others' ${ }^{\prime \prime}$. The sereen dike is a pile bridge, the piles being driven others ${ }^{10}$. The screen dike is a pile briage, the pice smo on the fhrough a mat 100 feet wifle which had previously been sume on but bottom of the river, the mat not being woven like the shore mat, bult hike those used by the Mississippi Rive: Commission, in frole work of poles being used above and below the lrusl: and the lighe wired together; a rertical mat similar to the shore mat, but of lighter character, was fastoned to the outor side of the piles; this screen dik was buit in 1892 and 1893. During the winter of 883 around the or wis formg to clevation 105 thenghor was evidently more than it was wise to jut on the fomention mat,

The total amount of brush. rock and timber nied in the protection work was us follows:

In addition to the above there was used in temporary shore protec tion in 1892452 cords of brush and 1451358 pounds of stone.

The total cost of the protection work was $\$ 67691.02$.

VIII
cost.
The cost of the bridge is shown in the following table

The iten of freight includes froight on the $\mathrm{C}, \mathrm{B} . \mathrm{d} \mathrm{Q}$. system only In comparing the cost of the bridge with that of other structures, the cost kithout frcight forms the most correct basis fir comparison.
This table may be condensed into the following:
Thithout fright forths the mast cor

	Cort, atcluding Freight Charger	Freight Charges.	Cost, inclnding Freight Clarges
Substructure.	\$427 cor.04	\% 1788.50	8298934.44
Suyerstructure	588220.40	18782.85	545045.84
Total Bridge Proper.	955 228 B .19	8452.15	973880.28
North Approuch.	$1+4.753 .62$	5519.38	180837.98
Petrannent Traek.	8511.26	9.98	8530.24
Shore Protecion..	64 \%75.18	${ }^{819.568}$	${ }^{67} 891.02$
Touls, Serviee Tracks, eto.,	73005.98	3569	${ }^{73} 13.67$
Eng inering..............	49383.84	30.93	4038.286
Total Cost ..	\%1 2050505	${ }^{* 27} 682.00$	\$1 322 719.39

APPENDIX A.

LIST OF ENGINEERS, EMPLOYEES AND CONTRACTORS

ENGNEERS AND COMPANY'S EMPLOYEES
George s. Mabigon, Chief Enginee
Alpaed Norle, Absistant Chief Engineer
Bex, L. Crasar, Reendent Engineer Erkest G. Frezans, Assistant Eugineor. Hoakr Remd dtanforn,
Wа. G. Bebnsıк
Wa. L. Sumit,
Javers W. G. Wativer,
W.. R. Joнrsox, Iuppector

August T. Holarerbe, Rodman and Inspect
Jous F. Luxparkx, Cement Tester
Jasms M. Rrofardoon, Clorz
Jaspa M. Rrohardon, Clork.
Rurger R. Thay
Darbin Nowiax, M. D., Resident Physicion
H. II. Borx, M. D.,
E. Gerbre, Office Engineo
0. E. Hovit, Chicf Supersturutare Draughtoman

1. Dhekisson, Record Druughteman.

Hover Revo Staxpord, Tnep'r of Saperstrueture . . Ang. 19, 1892, 10 Oct. 31, 1893 Chanles Strases, Inepector nt Quarries May 13, 1892, to Sept. 17, 1892 O.W. Davis, " " " W............ Mar. 1, 1893, to May 31, 1893
I. S. Sqbwart, General Foreman................. May 1. 1899 to May 15, 1893

Dexns Leoxaro, Foreman of Pressure WorkJane 15, 1899, to May 3, 1893
M. F. Cosesk, Foreman of CarpentersJuno 27, 1892, to Juue 30,1881

Gronee Capre, Haster Meehanic.
Jons M. Guranu, Naster of Steamers
Pautine and Johi Bertram.

Felb, 20, 1892, to date.
fuly 1,1892 , to Dee. 31,1899
April 1, 1892, to Aug. 18, 1592 - June 23,1892 , to June $30,189 \mathrm{~A}$ Ang. 20, 1892, to Jan. 31, 189* Ang. 25, 1092, to July 31, 1593 July 1, 1892, to July 15,1893 Nar. 22, 1893, to Jone 30, 1894 Joly 26, 1892, to Dec. 31, 18 July 8,1892 , to date.
Sept. 26, 1892, to July 31,1893 Ang. 1, 1893, to Dee. 31, 1893

CONTRACTORS

Curistr \& Lowe	Masonry.
Gro. A Imorrie.	Resident Partner.
Chables Steat	Foreman of Masone.
Now Jriser Sterl \& Iron Compayy	Superstructure.
Wiemam Barg.	Erection.
A. \& P. Robrrts \& Compant.	Viaduct.
Johe Eagler.	Forenan of Erection.
Josepr K, Goums	Matrees Brula and Riprup.
Moorrstule Stone Comrany. .	Riprap.

APPENDTX B

CHARTER AND CONTRACT WITH WAR DEPARTMENT.

CHARTER.

Ax Act atthorizna the Coxstrictrov of a Brides aoross the Missonki River
 Misequrt, haziny the Citt of saixt Cabrees.
Be it enacted by the Senate and House of Kiepresentatives of the Tnited Sitates Be it enacled by the Senale and Jouse of Kienresentatuves of the United states
of Americu, in Congress ussembled, That the Saint Lonis, Keokak i\& Nortlwestern Railroad Conipany, an ineorporation orgauized under the laws of the Sthte of Iowa, and owring aud operating as railroad in the State of Nisourti, its assigus or suecessors, is hereby nathorized to construct and maintain a bridge aeross the Missomi River at such point as may be herenfter selected by snid corporation between the City of Suint Charlee and the mouth of the Missouri River, in the Connty of Stint Charles, in the State of Missouri, ss slatl best promote the public convenience and -wellare and the necessities of business and commerce; and also to construct ncoces Eory works to sccure the best praeticable clannel-way for narigation, and conffne
the flow of the water to a pormancon eliamel at sueh point, and to lay on and over the flow of the watcr to a pormanent elammel at sueh point, and to lay on and oven
said bridge one or more railrod tracks for the more perfect connection of any said bridge one or more railrod tracks for the more perfect connection of
railroads that are or shah be constrmeted to said river at or opposite said point.
Ssc. 2. That ssid bridge shall be constructed and biilt withont interferenee with the security and convenience of navigation of said river beyoud wbat is necessany to carry into effect the rights and privileges leereby grauted; and in order to seeure that object the said company or corporation shall entmit to the Seeretary of Ter, for his examination and approval, a design and drawings of tbe bridge, and a map of the location, giving for the apace of one mile above and one mile below the proposed loeation, the topography of the banks of the river, the sbore lines to high and low water, the loceation of any otber bridge or bridgees, and shall furnish such other infornantion ns
may be required for n full ayd satisfactory underetanding of the subject; and until the seid plan and loeation of the bridge are approved by the Secretary of War, the
bridge shall not he built: Providen, that if the said bridge shall be made with unbroken and continuons apans, it shall have three or more ehannel spane, and shall not be of less clevation in any ease than lifty feet above higl.water mark, as understood at the point of location, to the lowest part of the superstructure, nor alanl the spans of said hiridge be less than three hundired feet in length, and the pierr of said bridge shall be pearallel with the current of said river, and the main span shall be over the mana chamel of the river, and not less than three handred feet in length : AXP Provided ALso, that if any bridge brilt mider this act glail be constructed as over the maiu channel of the river at an accessible and uaviguble point, and witl over the maiu channel of tho river at an accessible and uavigable point, and with
spans of not less than one hundred and sixty feet in length in the clear on each side spans of not less than one hundred and sixty feet in length in the clear on each sid
of the central or pivat pier of the draw, end the uext adjoining span or speans to the draw shall not be lcss than three hruidred fcet, and the head room nuder such span
 ssid draw shall be opeued promptly npou reasonshle signal for the passing of boats; and said comprany or corporation shall maintain, at its own oxyense, from sunset till sumrise, sucb lights or other Eignals on said bridge as the Light. House Board shall preseribe: Proynizd ALso, that all railroad companies desiring the use of snid bridge shall have and be entitled to eqnal rights and privileges relative to the passage of railway trains over the same, and over the approwhes thereto, upon payof said bridge and the several railroad comparies, or any one of them desiring such nse, shall fail to agree upon the aum or sunus to be paid, and upon rriles and condiuse, shal fail to agree npon the sum or sums to be paid, and upon rizes and concithem shaill be docided by the Secretay of War, apon a hearing of the allogations and proofe of the parties

Sko. 3. That the Seeretary of War is liereby anthorized and directed, upon reeeiving such plan and map and other information, end upon being satiefled that a bridge built on such plan, and with sueb aecessory works and at sueh locelity, will
conform to the prescribed conditions of this aet, to notify the company thet he approves the sane; and upon receviving sucb notifieation the said company may proceced to an crection of said bridge, conforming strietly to the approved plan and location; and slowld any ehange be made in the plau of the bridge or said acces sory works, during the progroes of the work thereon, such elange shall be subjee likewsise to the approval of the Secretary of War, and in case of any litigation arising from any obstrtrction or alleged obstruction to the frec navigation of said Cirenit Conrt of the United States of the Eastern Distriet of the State of Missouri, in whose jurisdiction any portion of said obstruction or bridge may be located.
in whose jurisdiction any portion of sald obstruetion or brigge may be nocated.
Swo. 4. That the said hride and accessory works, when buiit, and constructai under this nat end according to the tornse and limitations thereof, shall be lawful strnetures; sud said bridge shall be recognized and known as a post route, upo which also no higher elharge slatil be made for tho trinsmission over the same of the mails, the troops, and the muxitions of war of the United States than the rate per mile paid for the transpartation oror the railroads or public highways leading to sail bridge; and said bridge shall enjoy the righlts and privileges of other post-rontes in the United States.
Seo. 5. Thast the United States shall have the right of way for sueh postal and telegraph lines neross said bridge as the governinent may construet or control. Sec. 6. Tbat Oongress slall have power at any time to alter, anond or repeal navigation of said river by the construction of ssid bridge and its mections to the and all alterations of said bridge elhall be made, and all such obstruetions shall be removed at the expense of the owners of or parsons controlling such bridge Provinen roxiter, that nothing in this act shall be so construed as to rejeeal or modify any of the provisions of law now existing in reference to the protection of the narigation of rivers, or to oxempt tbis bridge from the operation of the same. Approved, February 17, 1888.

CONTRACT WITII MAR DEPARTMEXT.

Whekris, By an act of Congrest, approved Febrary 17th, 1938, eutited "An act anthorizing the constraction of a bridge ncross the Missomri River at sonne secessible point in the Conity of St. Pharies, in the State of Missomi, below the City of 8 . Charles," the St. Louis, Keoknk \& Northwestern Rairoad Company:

 to eonstrnet and maintain a rail road bridge across the Missomi River at mell point
as might he selected by said corporition, between the City of St. Charles and the
 and as wonld best pronote the pmblic eanvenience and welfare and the necersities of bosiness and commerce; and, also, to constrnct necessory works to seeure the hest practicalle chamuel-way for unvigation, and couffine the How of the water to a Rermanent clanuel at suel point: and
Wusknas. It is proxiled by section two of the said Act, "That said lurilge shall be constrmeted and bilt withont interfcrence with the scanity mud couvenience of nurigation of Eaid river, beyoud what is neeeseary to curry into cifect the rights and orvoration elhall shlanit to the Sercetury of War, for his evamiuntion and approral, adesiga and drawing of the bridge, and a map of the location, giviny for the snece design and drawing or the trage, and a map of the hore and one mile belort the proposed location, the topograulyy of the of one mile abore and one mile belors the proposed location, the topograylly of the
banks of the river, the shore lines to lighl nud lows water, the loeation of any other lridge or briages, and shall furraikh sucl other information as may be required for a full anul satistactory understanding of the sulpject; and uutil the said plau and
loration of the bridge are approped by the Secretary of Whir, the lridge shall not be brilt: "und by section three uf the said net, "That the Seeretary of War is berelby anthorived and directed, npon receiving smel! plan and map and other information, and apoun being satisffed that a bridge buitt on snch plan and with such hecessory works and at such locality will conforn to the prescribed conditions of his act, to notify the complany han he apprones he s.ane, -I dpuil receetring such hotitication the sail complany may proceed to an erection of anid bridge, conforming strictly to the approved phau and location; and should any clange be mede in the plan of the bridge or said accussory whrks, dming the progress of the work War:" and,
Whreses, The St. Lomis, Keuknk de Xorthwestem Railmad Company aforesalu has necepted the provisions of the Act of Congless nforesail, anll, iu compliance herewith, has subbilttel to the Sceretary of War. for lide cxanination and alprovnls design aml drawing and n map of lueation of a propect liridge across the Misouri River at a point between the City of St. Charles an! the month of the Misouri River, in the County of St. Charles, State of Missomi: and. Lientenautform to thic renuircments of the said act. and also to the regnirements which heal heen deemed neceseay l,y the Missonni River Counisision, mud reeonmends that hes be appored, and the Chief of Engineers, Inited States Aruy, concurs in sail reconmentlation,
Wher: thergfors. I, Redheld Proctur. Seceretary of War, having examined aud oonsidered the ilesign and drawing and the uap of location aforesaid, snbuyited by the St. Lounis, Keokulk is Northwestern Railroal Conpany as aforsunid, and which

Wre hereto attaclied, do hereby approve the salue, subbject, howeser, to the following arress conctition

That the Figinecr Ofticer of the Cuited States Army, in change of the distriet within whiels the lridge is to be bmilt, may snicervise its conetruction so far as way be ueepssary in order that whe plans herein approved shall be complied wit Il the bridge unilt aceordingl

$$
\begin{aligned}
& \text { Rember, Iss } \\
& \text { (Siguedi) }
\end{aligned}
$$

:rdield Proctor,
Secretury of War.

This instrument is also exeonted by the St. Iouik, Keoknk \& Northwestern Railronil Company by W. W. Tald win, its Presilent, therennto law fnlly anthorized is 14 til day of Dee wh. of the provisions of the Act of Congreas aforeraid, and of the eondition herein

```
sige
In precence of By W. W. Hatomix,
presence of
(Sgd.) II. E. J.aryl,
```

Attert: (Egy.) J. U. s.mprils

Seal of R. R. Co.]
ceal Trited States of America-War offices

RECORD OF SINIKING CAISSONS. PIER II.

PIER IL-CONTINUED.

$$
\text { Observations taken at } 80^{\prime} \text { clock. }
$$

	Eluexaroasa or Cortrina Enar					staras		Buratioxs or Grosxio．						Water	Depth	Wriome．								Ana Preseren．				$\begin{aligned} & \text { chtrace } \\ & \text { cos. } \end{aligned}$		\ıazemaz	REM ${ }_{\text {dres }}$
	．	＊\％	s． E ．	¢\％．	Arense．	${ }^{\text {Hemat }}$	Total	\％．${ }^{\text {B }}$	＊w	s． E ．	s．w．A	Averse										Waber	Total．	limed	${ }_{\text {cose }}^{\text {catas }}$						
2					¢3．100	Fi．	Ft．	80．00	79.00	81．00	79.00	79.75	12．	93.00	$\begin{aligned} & { }^{\text {FR.t. }} \\ & 10.10 \end{aligned}$	$\begin{gathered} \text { Tous } \\ \text { Tas } \\ 3 \end{gathered}$		Tons. To	$\frac{\text { Rone }}{\text { Tome }}$	Tons． 1	Tons．	Tuas．	Tous 3 3	Lbs．	Ebse	Tons．	Tons，	sq．Ft．	Lbs．		
25					82.40	0.87	0.60	73.40	74．90	76.40	73．40	75.49		99.99	18.50	345	${ }^{37}$	．．．．．．	0				331								
${ }_{38}$					81.88	1.10	1.70	74．90	${ }_{74.90}$	74.99	72．40	74.48		92.91	11．60	3%	4		10				417								
${ }^{27}$	80.30	80.20	79.90	79.80	${ }^{50.00}$	1.25	2.95	79．70	73．50	73.70	79．70	73． 20		92．79	12．б亠幺	398	${ }^{13}$	．．．．	10			${ }^{48}$	${ }_{4} 8$								
${ }^{28}$	81.45	${ }^{81.55}$	80.50	${ }^{89.60}$	81.68	-0.98	1．98	${ }^{\text {73．65 }}$	7．4．65	${ }^{\text {7 }}$ ． 65	${ }^{7} 4.65$	${ }^{79.96}$		${ }^{93.65}$	11．13	419	${ }^{43}$						183								Water pumper out of caisson． Colsereting eornmencect ot $8.500^{\circ} 0$ loch．
${ }^{29}$	80． 81	89.83	80.42	50 5t	80.68	0.34	2.83	72．60	71． 60	79．00	72．69	${ }^{79} 35$	．．．．．．	${ }^{92.60}$	11.62 11.20	44	41		10				408								Concreting cormencect at 8.50 óloeli．
${ }^{30}$	${ }_{7}+1.81$	¢0．88	${ }^{4} 4.81$	75．65	75． 30	5.33	7．60	6． 6.05	67．05	70．05	69．05	68．80		${ }^{92.55}$	${ }^{17.20}$	486	${ }^{15}$	239					\％80								
Oct． 1	${ }^{71.81}$	72．28	${ }^{21.66}$	21．87	71.59	3．48	11.11	68．32	68.29	60．73	${ }_{66.88}$	． 95		92.73	${ }^{20.85}$	${ }^{5098}$	49	${ }^{619}$	10				1188								
	${ }^{70.98}$	${ }^{69.78}$	${ }^{71.88}$	${ }^{\text {co．06 }}$	${ }^{20.59}$	1.38	12.48	68．69	${ }^{\text {71．}}$ ． 0	${ }^{71.45}$	${ }^{68.60}$	${ }^{70.65}$		${ }^{923.79}$	22．18	${ }_{6}^{627}$	${ }_{51}^{51}$	${ }^{2988}$	${ }_{10}^{10}$	\ldots			1346					268			
3	70.38 89.89	68．44	${ }^{71.5+1}$	69．60	69．19	${ }_{0}^{0.58}$	18．01	${ }^{60.79}$	${ }^{68.60}$	74．50	${ }_{71}^{72.60}$	${ }_{\text {71．40 }}^{7.31}$	${ }_{2}^{1.41}$	$\begin{aligned} & \text { 92.07 } \end{aligned}$	${ }_{2}^{29.58}$	518 530 50	${ }_{53}^{53}$	1204	${ }_{13}^{12}$				11516	9．09	9.87	1491	103	${ }_{612}^{268}$	2330	Fine sund．	
	$\begin{aligned} & \text { 69..89 } \\ & 60.23 \end{aligned}$	$\begin{gathered} 68.089 \\ 67.58 \end{gathered}$	$\begin{aligned} & 71.29 \\ & 70.12 \end{aligned}$	$\begin{aligned} & 69.49 \\ & 68.73 \end{aligned}$	$\begin{aligned} & 69.74 \\ & 68.09 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.75 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 13.98 \\ & 14.91 \end{aligned}$	$\begin{aligned} & 71.78 \\ & 71.78 \end{aligned}$	$\begin{gathered} 71.78 \\ 7.28 \end{gathered}$	$\begin{aligned} & \text { rit.03 } \\ & i_{4}+43 \end{aligned}$	$\begin{aligned} & 71.63 \\ & 70.28 \end{aligned}$	$\begin{aligned} & 79.31 \\ & 78.18 \end{aligned}$	${ }_{3}^{2.19}$	${ }^{92.43}$ ；	23.44	${ }_{350}^{350}$	${ }_{53}$	1673	14				2390	9．75	10.17	${ }^{1536}$		698	${ }_{2384}$	隹	
A	${ }^{\text {e7．} 98}$	67． 90	07．94	6¢． 76	${ }^{67} .87$	1.12	15.18	${ }^{71.57}$	${ }^{21.57}$	70．87	70.87	72．72	4.85	92．35	3， 50	587	53	1673	14				2397	10.50	10．63	1806	791	970	145		
7	66^{98}	67．68	${ }^{\text {en }} 83$	62.73	${ }^{67.85}$	0.02	${ }^{15.15}$	${ }^{11.58}$	70．98	77．4	65． 28	${ }^{71.93}$	4.08	22．28	2．43	634	55	280	14				2ras	11.50	10.50	1601	${ }^{1152}$	816	28.	＂．	
8	${ }_{65} 5.96$	66.10		${ }^{65.73}$	${ }^{6}$ ． 84	2.01	17.16	${ }^{71.84}$	69．34	768	${ }^{69.95}$	${ }^{71.67}$	5．98	29．25	2.48	${ }^{694}$	5^{50}	2395	14				${ }^{3012}$	${ }^{12.78}$	${ }^{11.45}$	1730	${ }_{1312}^{132}$	1163	${ }^{2386}$		
9	83.89	${ }^{61.66}$	84.07	（2．21	62.57	2.95	30.13	90．41	c9． 40	it． 71	69.81	${ }^{71.06}$	8.18	${ }^{93.31}$	29.34	${ }_{635}$	${ }^{50}$	9331	${ }^{15}$				3181	13．00	19.73	${ }^{193}$	1338	1138	1878		
19	${ }^{60.3 \%}$	39.19	${ }^{60.86}$	59．41	59．88	2.93	${ }^{23.12}$	71.57	${ }^{69.07}$	－4．40	67． 40	70．73	10.85	92． 15	${ }^{32.27}$	${ }^{673}$	${ }^{50}$	3019	16				${ }^{3759}$	15.00	14.01	${ }^{2116}$	$16{ }^{16}$	291	1314		
11	${ }^{67} .97$	56．72	55.03	50.78	\％7． 98	2.50	23.182	${ }^{11.38}$	69.38	${ }^{75.08}$	28.00	71.46	14．0s	92.08	34.70	${ }_{73} 3$		${ }_{34} 3$	18				$415 \pm$	16.90	15.98	29：5	1878	9817	1384	Medima sand．	
12	${ }^{35.53}$	53.78	${ }^{65} .35$	${ }^{38} 80$	${ }^{3}+56$	2．88	23． 44	${ }^{23.00}$	73.00	24.55	72.00	23.14	${ }^{17.88}$	22.05	37． 49	${ }^{2} 54$	π	3732	17				450	10．75	10．27	$y^{2}+8 \mathrm{~s}$	2112	${ }^{2315}$	1202	Heary suni．	
14	42．8t	53.09 47.74	（30．72	\％1． 971 47.84	33.41 48.85	2． 15 3.50	${ }_{3}^{30.59}$	${ }^{71.83}{ }^{71.19}$ ．	－ $\begin{aligned} & 6.3 .33 \\ & 68.10\end{aligned}$	${ }^{74.95}$		71.92 71.10	19.51 23.25	93.00 91.98	39.59 +3.08	${ }_{837}^{798}$		${ }^{4177}$	19 90				5037 6，	18.100 20.30	17.18 18.50	－	$\underset{\substack{2412 \\ 2719}}{ }$	9993 4 $4+50$	1289 1219		
15	43.91	43．84	44.18	43．05	43.48	6.37	39.82	72.79	68．20	¢9．60	79.20	71.43	27.85	91.90	48.49	871	7	4155	9				599	39.00	21.01	3174		$\operatorname{sins}^{5} 9$	g88	．	
${ }^{18}$	41．31	40.36	${ }^{41} .79$	40.01	${ }^{41.07}$	2.11	${ }^{11.03}$	${ }^{7} 1.10$	68.10	${ }^{73} 20$	72.50	73．00	30．93	${ }^{91.987}$	53．80	912	7	5080	${ }^{28}$				ant	23．00	23．04	3329	${ }^{24} 48$	0150	8＊\％	＂＂	
17	40.70	39.02	10．91	S9．23	39.97	1.10	43．08	${ }^{74.85}$	${ }^{60.35}$	${ }^{71.60}$	${ }^{3} .10$	${ }^{71.60}$	${ }^{31,68}$	${ }^{91.83}$	51.88	925	7	5177	23				6203	24．06	22.63	3103	2800	＊327	885	＂＂	
18	${ }^{39.39}$	${ }^{38.33}$	39.59	${ }^{38.73}$	${ }^{38.90}$	1.01	${ }^{14} 04$	72.10	48.08	${ }^{73.048}$	74．07	${ }^{71.81}$	${ }^{32,53,}$ ，	${ }^{91.87}$	52.91	${ }^{967}$	${ }_{4} 8$	${ }_{5010}^{5010}$	${ }_{25}^{25}$				${ }_{\text {a }}^{4} 878$	${ }^{93} 25$	29．96	${ }^{3468}$	3110	${ }^{6575}$	${ }^{947}$	＂＂	
18 20	38，70	84．23	35.50		33.07	8.89	${ }^{47} .183$	${ }^{71.45}$	${ }_{65}^{68.45}$	${ }^{73.45}$	${ }^{71.05}$	${ }^{70.83}$	${ }^{85} .75$	91． 815	31．48	${ }_{\substack{994 \\ 1023}}$	${ }_{85}^{88}$	$\underbrace{}_{\substack{5738 \\ \text { f123 }}}$	${ }_{28}^{23}$					36.00 28.80 20	24．99	${ }^{3} 7190$	3105	\％ 7150	564		
20	${ }^{31.38}$	30.10	81.59	30.91	30．45	4.88	33.15	74.23	65．73	${ }^{73.88}$	72.65	71．49	40．14	${ }^{92} .15$	${ }^{81.340}$	1023	${ }^{8}$	${ }^{6123}$					${ }^{1230}$	28.30	${ }^{26.00}$	4018	${ }^{3238}$	8129	${ }_{797}$	\｛ with liny balls	
	29．74	28．76	39.98	28．60	23.27	1.58	59.78	88．40	${ }^{87} .48$	＋4．20	re．70	${ }^{\text {P0，}} 88$	41.41	923．30	6.93	1031	${ }_{8} 8$		${ }^{28}$				7801	27.25	27.31	412\％	3476	8281	839	＂＂	Truber work of caisson Anisited．
${ }_{22}^{22}$	20．47	${ }^{35.91}$	${ }^{20.67}$	25． 51	${ }^{23.99}$	0．28	57.01	${ }^{70.00}$	67.50 65.68 8.	${ }^{74.301}$	${ }^{4.40}$	${ }^{71.55}$	43． 50	${ }^{13} 10$	${ }^{68.11}$	1091	${ }_{80}^{80}$	6811 7128 1	${ }^{28}$				${ }^{7} 387$	${ }^{29.75}$	28． 89	4334	3828	9112	793		
23 24	－ 23.29	${ }^{29.18}$	23．41	－ 39.87	29.79 20.83	3.20 1.96	\％90． 81	74.68 70.50		${ }^{74.68}$	74．13		49．78 51．92	¢82．08	${ }_{7}^{69.29}$	${ }_{1091}^{1031}$	${ }_{86}^{88}$	7129 7290	${ }_{36}$				${ }_{8}^{8270}$	80.80 81.00 ar	30.07 30.82 30	${ }_{4}^{434}$		－${ }^{\text {93930 }}$	${ }_{7}^{7+9}$	Caarese smm．	reting of caissan finslu
25	21．2	20.25	81.36	${ }_{20.40}$	20.81	0.02	82． 19	r1．	${ }^{67.60}$	88	т3． 38	21．73	50．89	92， 22	71.41	1031	${ }_{86}$	\％930	${ }_{3}$				צ335	${ }^{11.50}$	30.54	4193	367	11179	722	＂＂	Leging of masorry conm meneed．

Observations taken at 8 o'elcock

Observations taken at 8 o'clock.

PIER II-CONTINUED

TTME, COST AND MATERLALS USED IN FOUNDATIONS. PIER III.

APPENDIX D-CONTINUED
TIME, COS' AND MATERIALS USED IN FOUNDATIONS.
PIER IIT.-CONTINUED.

APPENDIX D.-CONTINUED.
TIME, COST AND MATERTALS USED TN FOUNDATIONS.
PIER TV.

APPENDIX D.-CONTINUED.
TIME, COST AND MATERIALS USED IN FOUNDATIONS. PIER TV.-CONTINUED.

APPENDIX H

GENERAJ.

1. The masonry will comprise onc abntinent aud fonr piers.
2. The masonry will comprise onc abntinent aud fonr piers.
3. The piers will be numbered from the St. Louis Countr : Ahore to the St , Charles County shore, the East or Bonth Abutuent being Cier I and the pier next to the St. Charies Connty bank Pier Y゙.
4. Pier I will be an abutment with square wing walls,
5. Ficre II and IV will measure 12 feest thick and $3+$ feet long between shoulders under the belting coarso. The ends will be ronnd for the upper 38 feet and pointed below.
6. Pier III will be precisely like Piers II and IV, except tlat it will be six aud one-half inehes higher, this differcnee being added to the round ended portion. 6. Pier I will measnre 9 feet tbick and 37 feet long between sboulders under be belting comrac, end will have romnd ends throughon
. Pier I will be built
 Bedford, Indiana. It is estimated to contain approximately 1300 enbie yards. ace stones of the entire piers for a height of 30 feet below the pointed conings will be granite. Ench of these picra will contain approximately 2800 oulvic yards of masony of which approximatcly too cubie yards will be granite.
7. Pier Y wrill he built entirely of Tedford limestone and will contain approximately 1300 cuhic yards of matonry.
8. The entire masonry shall be built according to detail plans furmished by the Chief Eugincer.
stone
9. The face stone must be strong, compact, of uniform quality and appearance and free fron any defects which in the judgment of the Eugineer appearance and free from any defects which in the jndgment of the Eugineer may impair its atrength or durability. The so-called blue stone whicl does not
stand quarrying in the winter shall only be used below the lerel of the granite work or in baeking.
10. No course shall be less than sixteen incles in thiekness and no conrse below the belting course slall be tlieker than the one beneatli it
11. Exch bed of every stone shall inensure at least thirty-six inches in each firection, except that where the thickucss of the course is less tban twenty-four nches the bed need not exceed one and onelhalf times the thickness of the stone. 14. Nie sottom bed. Thall have an overhanging top bed

SPECTFICATIONS FOR MASOARY
15. Stretchers shall not be less than fonr feet nor more than seren feet long, and stretchers of the same width shall not be placed together vertically. but this shall not apply to the cnds of stretchers where headers come centrally between tretebers.
16. Feaders slanll be at least five feet long and shall be at least three-qnarters their full widh for the whole iength. There shall be at lenst three headers on each side of erery course betwren the shoulders
17. The backing shall be composed of stones of the same thickness as the fuee stones, with beds ent in the sume manner as required for the face stoncs and with to overlanging top beds. The spaces between the large stones slaill not occupy more than one-fifth of the entire aren of the pier indide of the face stones fall mortar beds and well ramined

cuttive.

18. The fuce lines of cach stone shall be true, and the rise as fixed by thic face nees shall not vary anywhere more than 1 of an incl from the true rise of the course. The upper and lower beds shall be truly parallcl and cut to conform with
19. the requirements for the face lincs. Depressions of more than one-quarter of an anch below the true planes shall never exceed one tenth of the area of the bed. 20. Joiuts shall be cut vertical and at right angles to the face of the stone mless otherwise shown on special plans. The cutting for at least 12 incles beck from the face shall be the same es thet required for the heds.
20. Joints shall be broken at least fifteen inches on the face
21. The vertieal joints shall not average more than three-eighths of an inch - mortar jointe will not be afll bed of mortar and settled to a froper bearing, no levelera being allowed.
22. The face of the granite entwnters of Piers II, III and IV shall be fine pointed work with no projections exceeding one-half inch.
23. The eopings, ineluding those over the pointed starlings, shall lave the aper surface, washi, taee and the lower beds for a width of six inches back bubli hammered with trie lines and snrfaces. The lower bed of the belting eourses shail
We bnehharamored to the same extent
24. The coping shall be ont with close joints throughout the whole pier and ccording to special plant
25. A four-incl draft line sliar be cut on all verical anglos aut around the lower cages of the belting coursie below the coping.
26. All other portions of the piers slall have a rungh quarry face with no pro fections exceeding three inches, the quarry face to average at least one and a hal cles from the pirtil we of joins in 28. No grab holes of work of the cutwater.

MORTAR

29. All face stones shanl be laid in Portiand cement mortar, troo parts of sand one part of cement. The hackings shall he laid in American cement mortar, two parts of sund to one part of cement.
w. When masonry is laid up tin freezing weather the backing shall be laid in Portand cennent, thrree parts of sand and onc part of cement, and such other pro antions taken againet freczing as the Engineer may direct.
-1. An stones manst be careffilly elcaned and wet before seting, and no mortar veds slanll be laid un til the course below bas been eleaned and we
30. The joints of the face stones slinll be cleaned out to a depth of one and ne half inches, and pointod in mild weather with a nortar composed of two part fand and one part of Portland Cement, which slall be driven in with a calking iron.
31. The cenent will be furrieled hy the Railrond Compuny, but the contractor will bo held rosponsible for all waste or injury to the same

rronivg.

34. The stoncs of the curved up streun starlings of Piers II, III and IV slaall he dowelled into those of the conrse below with one and oneeighth inche steel lowels extending six iuches into eacll course, thess dowels to he placed about ten dowels extending six iuches into eacli course, theso dowels to he placed about ten inches back from the face and sevin winches ou cach side of eachi joint. The etones Shall be extended six inches into the lower course, a small quantity of mortar shal be put into the hole, the dowel dropped in and the Lhole filled with mortar and well rammed.
35. The joints in the tirree comscs below the coping in all piers shall be cramped with cramps of one-incl round iron sixteen iuches long, the ends put fon
inches into eachl stone.

APPENDIA E:-Continued.

TERNS.

36. The foundations will be prepared by the Railroad Company 37. Pier I will be founded on rock above the leval of high water. The necees sary excavation will be made and the fonndation leveled up with conerete lyy tie Railrond Company.
37. Piers II,

Piers II, III, IT and Y will be founded on premuatic caissons, and the contractor will be required to lay this masonry as the sinking proceeds and to accommodate his tools and machinery to the requirements of the preumatie work
39. The contmator will be required to do without charge whatever hoisting may be required at the pier in piacing or remo
the pnenmatic work while masonry is being laid.
the pnenmatie work while masanry is being lidid.
40. Preparations must be made on the supposition that one of the three piers II, III and IV will be ready for inasonry on Angust 1, 1842, that another will be ready six weeks thereafter and that the third will be ready by Norember 1 , 1892. 41. The contractor must be prepared to lay at least two conrses daily while the sinking is in progress and will tee responsible for any delays due to his inability to lay np the masonry at this rate.
42. The contractor mnst be prepared to begin work on Pier T on Jamaary 1893, and to begin work on the enst abutment not later than March 1, 1892.
43. Piors II, III and IY slall be finished in the order which the Engineer
may direct, and the entire masonry of the hridge shall be completed on or before May 1, 1593. in. Charles connty aud dhal hegin tie delivery of stone at this yard as carly possilie and shall liare a suffeient nnount of stone to complete the gramie wor of Piers II, III and IV delivered at tlis yard on or beforc Anguet 1,1699
45. The contractor shali furwisl ahl tools, machiuery and materials of every Find except cement, and complete the masonry ready to receive the superstructur strneture

> Payments.
47. Monthly payments shall be made to the contraetor on or about the middle of each month. These monthly payments slaill be based on approximate estimates made of the worls performed up to the ond of the preceding month, ten per cent. being held baek till completion of contract.
45. In tinese estimates material delivered ready for uee lut not jet in place in the permanent strmeture shall be estimated at the following prices
Limestone, ine..nding backing, cut, delivered and unloaded, ten dollars (810) per cubic yard.

Granite cut, delivered and nnloaded, twenty doliars (\$20) per culic yard

Miscellaneous.

 be supplied by the Raill road Compnny.20. Wherever the word Engineer is used in thees specifications, it is under stood to be the Chief Enyineer of the work. In the absenee of the Ohief Enginee the Resident Engineer will be considered as liis representative and instrnctions coming from the Resident Engineer will be considered equiralent to those given by the Chief Engineer.
21. A.l elevations mentioned in these epecifieations are referred to a datum 100 feet below the St. Lonis city directrix
22. In general it is understood that the work is to be done in a first class mar ner and that wherever these specifcations admit of a donlt the interpretation which makies the best work slall be fillowed

GEORGE S MORISON,
March 4, 1992

APPENDIX F

SPECIFICATIONS FOR SUPERSTRUCTURE

A. -Gexeral desoription

1. The Superstructure will consist of four spans, $4+0$ feet ench, all brilt for oubie track, the trusses being placed an feet letween centers. Earth truas will be vided into eight panels of $6 \overline{6}$ feet each and will be 55 feet deep between eenters The floor will be divided into sixteen pancis of 24 feet ain oce ediate floor beams being suspended from the middle of cach panel.
2. Eael spau is estimated to weigh approximately 2800000 pounds, including fenees und bearings
3. The entire struetare will be of MI steel, sanhject to the provisions of the Specifications permiting the ube of IIN and MS steel in details. Rivets, feuees and the lateral lods of the floor system will be of S steel.
4. The expansion and tixed bearings may be of forged Desemer steel, execpt such parts as are specified to he of east steel.
i. The entire strueture will therefore be of steel of one kind or anotiver. 6. Full detail plans showing all dimensions will be finrished by the Chiof Engineer. The work shall be built in all respeets aceording to these plans and milar plans will be furnished to the ingseetor. The nee of these plans will not relieve the contrator from the respousibility of correcting errors, frovided those rrors are of a manifest charecter which conld be discorered by a enreful inspeetion f the plans.
shold the eontmetor desire to make lis own shop plans, they will be for his use ouly, and lie will be held responsible for any variations between such phens and those furnisled by the Engineer.

B. - STEEL

Steel will he divided into font chsses: LIM, X, ws mad S , of whielt M and A will be standards, and $\Pi \mathrm{M}$ and MIS intermediates
2. Class M will be kuown as Medinm Steel and will be used in those portions -crery member which constitute the cal eulated seetion
be used for rivets, fenees and HyY and MS freel will be
, ins of the calculated sectio aceepted for details and parts which do not form

no steel siall be made
provision shall not bo held to exelude nem furmees erected in connection with old works.
6. If made in ma acid furrace, the anount of phosphoras in the fiwished pro net shall never exceed eighit one-jundredtho of one per ceut, this being a maximum not an average requiremerity

If made in a basie furnees, the amount of phosighorne shail never exceed forr one-hndadedths of one per eent, this being a maximum and not an average equirement, and bcing considered necessary to sho a proper ano tof werl the furnace, 8. The tinished proauet sha. be perfeet in all parts and free from irreg nid surface imperfections shall wever differ more than $2 \frac{11}{1}$ per eent, from the orderied ross sections as shown by the dimensions on the plans,
10. Steel tor pins more than four inches in diameter shall be hammered.
11. Every finithoci plate, bar or angle shall be stamped on one side, near the niddle, with a uninber identifying the melt, and this stanp shall be enrromuded

 melt nuubber on a metal tag attacled.
trest
12. A sampte bar not unore than two ineles wide, and having a cross seetion of one square ineis when the material is not less than onellalf tnch thick, shall be cut rom the fimished product of every melt. When takien from metal more than two oethes thiek this sample may be a turned, round bar. The laboratory tests shanll be made on this sample bar in its natural state without aunealing
13. When a melt is rolled into seeveral variotios of matcrial, ench variety sinll be epprately tested. A variety shall consist entrely of onc of the fillowing shapes Sheared Plates, Universal Niill Plates, Angles, Z's, Chanuels, I beaus Flats Rounds, Sqnares, Pin Steel and Eyebar Steel. Flats will inelude all flats no antended to be forged into eyebars. Where several sizes of the same variety arc Iled, the crross seetion of the largest size shall not be more than twice that of the eize whici comes nearest to mean.
ands to determine elongation slall be made a a longth of eight incies.
itself. In no ease shall any crack appear until tiee cirele around which the bar io
bent heeomas less thaun the thiekness of the bar. Exeept whelu the sample is talien from a pin, the sumple bar slall elose np agaiust itself withont showing any erael or flaw on the outside of the bent portion
10. The sample bar shall he tested in a lexer machine and the following equirements fulfilled

		crane or steri.		
	IfM.	M.	Ms.	8.
Uliunate Strengtli, lbs, jeer square ineil	T0.100	66000	62000	5×000
Elastic Linut, " " " "	35000	33000	31000	29000
Pereentage of Elongation in 8 ineles. .	18	22	$\stackrel{2+}{1}$	${ }^{26}$
" Reduetion at Fracture..	36	41	15	52

17. Where the sample is taken from a pin, the elongation and reduction will M steen
18. The enilire frueture shall Le silky
19. The requirements for ultimate streugth are means, and steel will be aecopted When the nltimate strength does not differ more than 4000 lbs . from the require ents of the table
20. The reqnirenients for elastic limit, elongation and rednetion are nininuan requirements, sud no steel will be aeeepted whicll falls below these conditions 21. The elastie limit will be observed by the falling of the besm of the testing 2.
2.2. Duplicate teats may be made when the first sample tested fulifils four of the the reqniremunts, the melt mas be accepted. Cases in which the teets are thonght not to give fair indientious of the elaraeter of the materifl, shall be referred to the Engineer
21. Analyses slonl be made showing the emmount of phosphorns and carlon in every melt, the drillings for these analyses being taken directly from one of the ingots. Resides this, a set of analyses of ploosphorras, carbon, silieon and mangacse sball be made from every ten melts, the drillings to be taken fron a sample est lar.

insexemios.

24. The mill iuspeetion sball be performed at the oxpense of the manuacture y an inspeetor aeepted by the Furineer. It will be the duty of this inspeetor to end the notiecs required helo
25. The aceeptanee of material by such inspector will not be considered final out the right is reserved to reject material wbich may prove defective or objectionbule at any time during mannfacture and erection
26. Two notiees of the acceptance of euch melt allall be mailed on the day of suel acceptance, stating the mumber of the secepted melt and quality of steel. One of these notices aloall be sent to the Engineer and oue to the slop inspector.
27. Two noties of the sbipment of manufactured materiss, identifying the melts ond dinensions, blall be mailed on the lay atter such shipmonts are made, in the same manner as the notices of the acceptance of material.
28. Weekly reports is full detail, including reports of chemieal analyses, for vhatever reason made, and certified by the mill inspector, shall he sent to the Engineer not later than the end of the week suceeeding the week in whicb eued testo ar made.
D.-GENERAL SHOP REQUTREMENTS

The work shall be dono in all reepees ts according to the detail plans furvished by the Engineer

Where there is room for donbt os to the quality of work required by the lans or speciffeations, the donbt shall be decided by using the best elass of worl a
prticularly specified or not, must he of the best precedent for the nse of other than the best kind of work
f. All material shall be cleaned, and if necessary, scraped, and given one eary coat of Cleycland Iron Clad Paint, purple brand, put on with boiled linseed oil before shipment. This applies to everything except machine-inisied surfaces

- he same paint sball be nsed whierever paining is required. ad and tallow before shipment lat sely

7. All small bolta, all ping less than sixx inches in diameter, the expansion roller and everytling with special work on it, shall be carefully boxed before stipment.
E.-RIVETED WORK.
8. All platee, angles and shapes sball be carefully struightened at the slop before they are put together; mill straightening will not be considered as meetiug this requirement:
. xithout distortion wben the marking is made
9. The size of rivetes stown on the plans is the size of the coid rivet before heating.

Eranerer of the finished rivet bole shall not be more than $\frac{1}{18}$ inch greater than the diameter of the cold rivet. The heated rivet shanll not drop into
hie hole, but require a slight pressare to force it in, the relative size of the xive end rivet hole must be sull as to meet this requirement.
the e rivet holes reamed ont while hey are so assembled, or an iron templet at least one inch thick shall be made and both parto reamed to fit this templet aveth Al surfaces in contact siall be cieaned aud paisted before they are put 7. The rivets slell be drives by power wherever this is possible. The manu fncturer will be required to procure special rivecting machines to meet special pos hons. This apppies specially to four webl chords
8. Al rivets shall be regular in Elape, with hempispherical heads concultri with the exee, abeolintely tight, and shall conopietely fill the holes. Tighteving b ralking or recnpping will not be allowed. This ayplies to Eoth power driven an azd.driven rivets,

The auglee of stringers must be square snd straight. The web-plate mus pot project abore the angles, and the onteide eiges of the top angies must never be above a trne plane and never more than iv in inch below a true plane coinceideut with the roots of the angles.
entside angle at the root of the angles conneeting stringers with floo beame, loor beams with poste, or in other hike details, sball never be icse then ight angle, anc the excese over a night angle shal.! never be greater than $\frac{1}{8}$ iuch in the longer leg of thic angle; the angle shall be perfeetly straight
11. These angles shell be so fitted that the lespth, mensmred to the root of any one of the angles, does not vary more than $\frac{1}{18}$ incli from the trie length. Thic ffect of these requirements will ve to prevent more han $\frac{1}{7}$ inchn reduction of ate file connection, widy will nequire no strain in the tive draw the parts together
12. All slicared or rongh edges shall be carefully planed of
13. The material may be punelied with holes $\frac{1}{6}$ inch tmaller than the eize of the 1t. Whan the thirknese exept as provided below. a thickuess $\frac{1}{4}$ inel leess thaz the diameter of the rivet, the punched hole elnall be $\frac{1}{6}$ inch emaller than the diameer of the rivet.
15. When the thickness of the metal is greater than a thickness $\frac{1}{8}$ iuch more han the diamcter of the rivet, no ponching will be allowed, lut the holes mmst be rilled
After the everal pieces have
 ivets, while the pieces are together.
7. After reauing, every hole stall be entirely sinooth, slowing that the renming tool bas everywiere tonched the metal. In special cases where this fails, the Eugineer may anthorize the lhole to be veamed to a larger size and larger rivets nsed. the sharp edges and make a fillet of at least + inch inder ench rivet head
19. After the reaning is completed the several pieces shall be taken apaut and leaned.
20. The surfaces in contact slall then be paisted, the parte assenbled while the pwint is fresh snd riveted up according to the foregoing reqnirements.
21. The fences which are made of S steel tray be puncled and riveted without reaming

F.-FORGED WORK.

1. The heads of eyebers and eniarged scrow-endis shail be formed by apsetting and forging into slape by a process aceeptable to the Engineer. No welds will be
2. After the working is completed, the bars shail be anneated in a suitable amealing furnace by heating them to a uniforna dark red Eeat and allowing them cool slowly
3. The form of the heids of steel eycbars may be moditied by the contructors to suit the proeess in mse at their works, bat the thickzess of the head shanl not be of suffcient sitrength to brcak the body of the ber
4. Eyebars shell be bored truly and at exaet distances, the pin-holes to bo exactly on the axis of the bar and at exactly rightit angles to the planes of the flat surfaces. 5. When aix bars of the same billed lexgth are piled together, the two pins shall pass throngh both pin-loless at the same time witbout driving. Every bar shall be tested for this requirement.

Pin holes chall be lored with a aharp toot that will make a clean, smooth cut. Two cuts shall always be taken, the finisthing ent never to be more than ? inel. Roughness in pin-holes will be sufficient reason for rejecting bars.

Here bar sliall be made than the number required for the strneture. When the ars are fivished, one bar of ench lot shall be selected by the inspector for festing This will require 14 full-size test bars in aill.
8. No bars known to be defeetive in any way shall be taken for teest bars, but the bars siall be selected as fini average specineus of the good bars which woild be accepted for the work.
9. Tbe test of fall size esebars shall bo made in the large testing machine at

Athens, Pa ,. unless some other machine is specially accepted by the Enginee
10. These bars will be required to develop an average stretch of twelve per
cent., and a ninimmms strotelu of ten per cent. before breaking. The elongatio shall be messured on a length of not less than twenty feed
. The bars will be required to break in the bod
. an ultimate strengtb of not less than 60000 pounds, as iodicated by the registering

before the bars are annealed; the bar selected sball then be eut in two, eacti has elanll be rebeaded, aud both halves shall be annealed, bored and tested, the two teste, however, to count as a single bai.
14. In the test of foll-size bars, a failure to meet the required elongation will be eonsidered fatal and be a sufficient canse for condemning the lare represented by the jar so tested; but the engineer slaal exanine carefully into the caneo of the breakage of any bar which does not meet the requirements and may order addtional tests if he sees it.
before heren perent. elongation before lreaking, a seeond bar slall be selected from the same lot of bars. If thit bar breaks in the tody, and the two bars develop the average stretel of twelve per
cent., the bass of this lot may be aecepted; provided, howerer, that if more than one-thisd of the total mmmber of bars tested break in the hend, the entire bill of eyehars may be rejected.

G.-MAOHINE WORK

The planing, drilling and reaming required under the provisions for riveted work slall always be performed.
2. The ends of the chord sections shall be faced so as to be perfeetly true after they are riveted np complicte, excepting only the projeecing epice piates. A speei riveting machine will be required to rivet on the splice plates of the four we chorwas after faeing.

When four chord pieces are fitted together complete in the shop, there shall be no perceptible wiud in the length of the four sections.

All chord seetions shall be stamped at each end on the ontside witb letters and numbers designating the joints in accordance with a diagram furnished by the Engineer.
.All pin-lioles and holes for turned bolte passing through the whole width of a riveted member, shall be bored or driled after all other work is completed. 6. Pin-holes shall be bored truly nad at exnet distanees, parallel with on arother, and at exactly right augles to the axis of the member.
. Pin-Loles thall be bored with a slarp tool which will make a clean, smooll cut. Two cuts shall alwags be taken, the finishing ent never to be more than incl. Roughinese in pin-boles will be sufficient reason for rejecting a whole member
8. Pin-boles slanll be bored to fit the pins witb a play not exceeding tin incb These requirements apply to lateral conneetions as well as to other pins.

The phans Ehow the distance between the centers of pinhholes. Shop measirements shall be made betwcen the bearing edges of tension or compression menbers, with a proper allowance for the diameter of the pin. An irous standard of the eanue tentiperature as the pieee moasured shall always be ased. thronghout slanll alko all other similar connection
12. All bearing surffaces shall be traly faced
18. All aurfaces so designated on the phans shaill be planed stand ard, cight fluent to the iselt
H.-beativgs

1. The Expansiox Beariss will consist of five parts: 1 , the Base Plate ; 2 , the Rollers; 3 , the Bearing Plate ; 4, the Roeker Plate; 5 , the Top Patate. 2. The Frwm Bearise will eonsist of three parts: 1 , the Support; ? the Roeker Plate; 3, the Ton Plate. The Rocker Plate and the Top Plate will be preeiely ly like the Toocker Plate and the Top Plate of the Expansion Boaring
2. The Fase Plate will consist of a plate $1 \ddagger$ in. thick, to whieb are riveted a number of steel rails, these rails to be Peunsylvamia Steel Company, Seetion is 5 in. high, with hecads $2 \frac{8}{8}$ in. wide, the rails piaced 3 in. between centers. The Sase of the rails sball be planed off in the manner sllown on the plan and tue rall Weten to the plate. The botcom of the plate shal then be planed, after which fee plate sumir be placed on a pianer and the tope of the rails and the outside faces polished to snoh an extent that the tool inarks eamnot be seen. Tbe side edges of the bottom plate shall also be planed.
3. The Rollers will be of forged steel. The ends and parallel sides shall be planed. The rolling surfaces shall be turned and polished. The bollow faess of the sides may be leit rongh. The pins at the ends of the rollers shal! be scremed into the rollers and keyed with a \ddagger in . key 11 in. long, the key seat being bored througb the threads of the serem. The side plates shacl be difiled to fit the pins with a play not oxceeding it in. All serews on pins stall bave truncented threads, evght threads to the inch

The Bearing Plate shall be of cast steel. The sido edgos buall be planed, and the hearing surface shan be phned aud polished. Whet his surface is finislien there shall be no blow-hole visible exceoding one incb in either dimension, n exceeding one-balf square inch in area. The length of blow-holes cut by any straight
line laid in any direction, sball never exceed one ineh in any one foot. The hollow cylindrical sarfaee of the socket shall he turned true and polislied; there slall be no cylindrical हarfaee of the socket shall be turned true and poislied; there slatil ve no blow or sand hole on this surface exceeving onebair an inct in eitber dreetion, nor
exeeeding one-sixteenth square inci in area, and the totar area of holes shall not exceed two per cent. of the entire surface; the sides of the socket shall be tarned true. 6. The Rocker Plate shall be a steel forging. The four sides shall be plane and fit the Eides of the socket within $\frac{1}{10}$ inch; the eylindrical surfaces shall be turned and polisbed to fit the corresponding anrfaces of the sockets exactly
7. The Top Plate shall be a steel casting, the apper surface being phaned aud haviug the same requirements as to blow-Loles as the lower surface of the Bearing Pate. The liollow soeket shall be subjeet to the same requirements as the soelcet of the Bearing Plate.
8. The sapport will be a steel ensting. The bottom slayl be plamed and the requirements as to blow-1olos sball be the same as for the bottorn of the Beariug Plate of the Expansion Bearing. The requirements for the socket Elamil bibo be the same. may be of Ber Piate, the Rollors iucinding side plates, and the Rocker Plate, finished pieces to be free from anl surface defcects and entirely free from piping. 10. Every stesl casting shall be east with a coapou for testing, whiel coupon shall be eut off after annealing, and the test sball be made on a a $\frac{\pi}{\mathrm{i}} \mathrm{i}$. round turned from this coupon, When tested this test piece sianll show ant nitimate strength of at least 70000 lhs , an elastic linit of at least 50000 lls , an elongation of at least 15 per eent. in two ineles and a redicetion of 20 per cent. at the point of fracturc.
11. The workanssip siall all be fretels, wha the polished suffo of the rollers and that of the plates, eitber above or below.

I.-ERECTION

The Ohicano, Burlington and Quincy Railroad will traubport the material from Ohicago to the bridge site, delivering it on a side traek where it can be nnloaded eanveniently on the north side of the river. No other transportation or switching will be furnisled.
2. The contractor will be expected to receive all material as it arrives on the cars, to aniond this material and store it in a materias yard until ready for erection. 3. He will be held re
traak will be ladd to a canvenient position for unloadina matevin switehing will be doze after the traterial lias once been unloaded.
\%. The contractor will be required to keep all the material in good condition,

APPENDTX F.-Continued.
and in case of its becoming dirty or rusty, will be expected to elean it before ereeting

The eontractor will be required to paint all surfaces which will be inaccessible for painting after erection, the paint being furruisheel by the Railroad Company. . The contractor will be required tu furnill all tools, barges and fuibe work of every deseription.

The contrator will be required to remove all work which he may put in the river, so that there will be notling left either to interfere with navigation or to eateh drift.
pe. No holes blail be drilled or bolts placed in the piers without the express permission of the Enginecr. All botts so put in shail be removed aud the holes
carefinly charged to the contractor
10. The setting of the wall plate eassinge, including the drilling of holes in masonry for the anchor boits, the packing of rust cement muder the castings, if used, and all other work connected therewith is to be done by the cantractor.
11. The entractor will be required to ereet the superstructure complete in every respeet ineluding riveting rcady to reecive the timber floor.
12. The erection Ehall include the placing and viveting of the fence and the ladders over the piers
13. The provisions as to riveting givea under the head of liviteo Wore, will apply to riveting done during erection.

K-TERMS.

The work will be paid for by the pound of finiehed work loailed on cars nd delivered to the Chicago, Burliugton id Quincy Railood, at Cbieago, the cars to go tlrough withent trausfer at Clieago
2. No material will be paid for that does not forn a part of the finished structure.
. All east of testing slaill he borne by the contructor:
nillung twenty per cent, in execess of each size over aud ahove this mumber sectnally nilling twenty per cent, in excess of eaci size over and alove the mimber sctnally
required, bot this excess will not be estimated, but considered as taling the place of the work which is not done on these rivets. The eontraetor for ereetion will be required to provide whatever rivets may be ueeded in excess of this surpluange.
5. The contractor will be reqnited to furnikh pin pilots, two for eacli size of pin, these pin pilots to be paid for at the same price ${ }^{\text {nor }}$ pornd as the rest of the work and to helong to tho Ruilroad Company
6. Approvimate estimates shall be made at the end of cach month of materinal eecived and work performed up to that time.
7. In these cstimatos inaterial reeeived at the shops bnt not mannfactured, will he estimated at 60 per cent. of the contract price for finished matcrial.
8. Material mannufactured but not shipged shall be estimated at 80 per cent, of
9. Waterial cospleted and slipped slall be betimated at the full contract price.
9. 10. The crection shall be paid for nt a fixed price per span, no estimate to be made on acoont of any apan until that Epau is selif-sustaining.
11. Paymente slall be made on or abont the middle of each montli, on the
basis of the cstimates made of work perforned mp to the end of the preceding month, deducting therefrom ten per eent, which will be held as seenity until the completion of the entire contract.
12. The four seyeral gjans shall be delivered completo in Chicago on or beforo the following dates

First Spau..
Second Spail

Jauary
Febrnary 1 1st, 18993.

Serond Span.
Third Span.

$.3 n l y$	1 1sts.
$\begin{array}{ll}\text { Is99. } \\ \text { Alygust } & \text { 1st, } \\ 1893\end{array}$	

It is expeeted that the masonry will be realy for the firist span on or beffore Jamary 1st, 1893; for the scoond sjan on or before February 1st, 1893; and for the other two spans on or before July 1 st, 1993
14. The erection shal follow the delivery of the material, if the river is in a
 Hhe track can be laid across the bridge on or before Oeteber 19th, 1898 .
15. These dates are of the essence of the contract, and no monthly cstimates will be paid to the contractor white le is in arrears in delivcrics or erection; and traek can be laid aeroess the bridge hy Oetober 1oth 1893 , he will be held reepoli sible for all expenses and other dauages which the railroad sompany many bo put to by reason of sueh delay.

May 28d, 1892.
GEO. S. MORISON, Ohiof Enginerr, St. Lowis Extension.

TEST OF STEEL EYE BARS.

STL.K\&NW.RR
BELLEFONTAINE BRIDGE
440'O"Span. End Elevation and Section.

